Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
PLoS Comput Biol ; 18(11): e1010724, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2140359

ABSTRACT

BACKGROUND: Following rapidly rising COVID-19 case numbers, England entered a national lockdown on 6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards. AIM: We characterise how the lockdown and subsequent easing of restrictions affected trends in SARS-CoV-2 infection prevalence. METHODS: On average, risk of infection is proportional to infection prevalence. The REal-time Assessment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of over 98,000 people every round (rounds approximately monthly) that estimates infection prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-varying reproduction number (Rt) nationally, regionally and by age group from round 8 (beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a comparator, a separate segmented-exponential model was used to quantify the impact on Rt of each relaxation of restrictions. RESULTS: Following an initial plateau of 1.54% until mid-January, infection prevalence decreased until 13 May when it reached a minimum of 0.09%, before increasing until the end of the study to 0.76%. Following the first easing of restrictions, which included schools reopening, the reproduction number Rt increased by 82% (55%, 108%), but then decreased by 61% (82%, 53%) at the second easing of restrictions, which was timed to match the Easter school holidays. Following further relaxations of restrictions, the observed Rt increased steadily, though the increase due to these restrictions being relaxed was offset by the effects of vaccination and also affected by the rapid rise of Delta. There was a high degree of synchrony in the temporal patterns of prevalence between regions and age groups. CONCLUSION: High-resolution prevalence data fitted to P-splines allowed us to show that the lockdown was effective at reducing risk of infection with school holidays/closures playing a significant part.

2.
Euro Surveill ; 27(44)2022 11.
Article in English | MEDLINE | ID: covidwho-2109635

ABSTRACT

BackgroundSince the roll-out of COVID-19 vaccines in late 2020 and throughout 2021, European governments have relied on mathematical modelling to inform policy decisions about COVID-19 vaccination.AimWe present a scenario-based modelling analysis in the Netherlands during summer 2021, to inform whether to extend vaccination to adolescents (12-17-year-olds) and children (5-11-year-olds).MethodsWe developed a deterministic, age-structured susceptible-exposed-infectious-recovered (SEIR) model and compared modelled incidences of infections, hospital and intensive care admissions, and deaths per 100,000 people across vaccination scenarios, before the emergence of the Omicron variant.ResultsOur model projections showed that, on average, upon the release of all non-pharmaceutical control measures on 1 November 2021, a large COVID-19 wave may occur in winter 2021/22, followed by a smaller, second wave in spring 2022, regardless of the vaccination scenario. The model projected reductions in infections/severe disease outcomes when vaccination was extended to adolescents and further reductions when vaccination was extended to all people over 5 years-old. When examining projected disease outcomes by age group, individuals benefitting most from extending vaccination were adolescents and children themselves. We also observed reductions in disease outcomes in older age groups, particularly of parent age (30-49 years), when children and adolescents were vaccinated, suggesting some prevention of onward transmission from younger to older age groups.ConclusionsWhile our scenarios could not anticipate the emergence/consequences of SARS-CoV-2 Omicron variant, we illustrate how our approach can assist decision making. This could be useful when considering to provide booster doses or intervening against future infection waves.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Adolescent , Humans , Aged , Adult , Middle Aged , Child, Preschool , Netherlands/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination
3.
Epidemics ; 40: 100604, 2022 09.
Article in English | MEDLINE | ID: covidwho-1905565

ABSTRACT

The time-varying reproduction number (Rt) can change rapidly over the course of a pandemic due to changing restrictions, behaviours, and levels of population immunity. Many methods exist that allow the estimation of Rt from case data. However, these are not easily adapted to point prevalence data nor can they infer Rt across periods of missing data. We developed a Bayesian P-spline model suitable for fitting to a wide range of epidemic time-series, including point-prevalence data. We demonstrate the utility of the model by fitting to periodic daily SARS-CoV-2 swab-positivity data in England from the first 7 rounds (May 2020-December 2020) of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Estimates of Rt over the period of two subsequent rounds (6-8 weeks) and single rounds (2-3 weeks) inferred using the Bayesian P-spline model were broadly consistent with estimates from a simple exponential model, with overlapping credible intervals. However, there were sometimes substantial differences in point estimates. The Bayesian P-spline model was further able to infer changes in Rt over shorter periods tracking a temporary increase above one during late-May 2020, a gradual increase in Rt over the summer of 2020 as restrictions were eased, and a reduction in Rt during England's second national lockdown followed by an increase as the Alpha variant surged. The model is robust against both under-fitting and over-fitting and is able to interpolate between periods of available data; it is a particularly versatile model when growth rate can change over small timescales, as in the current SARS-CoV-2 pandemic. This work highlights the importance of pairing robust methods with representative samples to track pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , COVID-19/epidemiology , Communicable Disease Control , Humans , Prevalence , Reproduction
4.
Vaccine ; 40(21): 2940-2948, 2022 05 09.
Article in English | MEDLINE | ID: covidwho-1805290

ABSTRACT

INTRODUCTION: Annual vaccination of children against influenza is a key component of vaccination programs in many countries. However, past infection and vaccination may affect an individual's susceptibility to infection. Little research has evaluated whether annual vaccination is the best strategy. Using the United Kingdom as our motivating example, we developed a framework to assess the impact of different childhood vaccination strategies, specifically annual and biennial (every other year), on attack rate and expected number of infections. METHODS AND FINDINGS: We present a multi-annual, individual-based, stochastic, force of infection model that accounts for individual exposure histories and disease/vaccine dynamics influencing susceptibility. We simulate birth cohorts that experience yearly influenza epidemics and follow them until age 18 to determine attack rates and the number of infections during childhood. We perform simulations under baseline conditions, with an assumed vaccination coverage of 44%, to compare annual vaccination to no and biennial vaccination. We relax our baseline assumptions to explore how our model assumptions impact vaccination program performance. At baseline, we observed less than half the number of infections between the ages 2 and 10 under annual vaccination in children who had been vaccinated at least half the time compared to no vaccination. When averaged over all ages 0-18, the number of infections under annual vaccination was 2.07 (2.06, 2.08) compared to 2.63 (2.62, 2.64) under no vaccination, and 2.38 (2.37, 2.40) under biennial vaccination. When we introduced a penalty for repeated exposures, we observed a decrease in the difference in infections between the vaccination strategies. Specifically, the difference in childhood infections under biennial compared to annual vaccination decreased from 0.31 to 0.04 as exposure penalty increased. CONCLUSION: Our results indicate that while annual vaccination averts more childhood infections than biennial vaccination, this difference is small. Our work confirms the value of annual vaccination in children, even with modest vaccination coverage, but also shows that similar benefits of vaccination may be obtained by implementing a biennial vaccination program. AUTHOR SUMMARY: Many countries include annual vaccination of children against influenza in their vaccination programs. In the United Kingdom (UK), annual vaccination of children aged of 2 to 10 against influenza is recommended. However, little research has evaluated whether annual vaccination is the best strategy, while accounting for how past infection and vaccination may affect an individual's susceptibility to infection in the current influenza season. Prior work has suggested that there may be a negative effect of repeated vaccination. In this work we developed a stochastic, individual-based model to assess the impact of repeated vaccination strategies on childhood infections. Specifically, we first compare annual vaccination to no vaccination and then annual vaccination to biennial (every other year) vaccination. We use the UK as our motivating example. We found that an annual vaccination strategy resulted in the fewest childhood infections, followed by biennial vaccination. The difference in number of childhood infections between the different vaccination strategies decreased when we introduced a penalty for repeated exposures. Our work confirms the value of annual vaccination in children, but also shows that similar benefits of vaccination can be obtained by implementing a biennial vaccination program, particularly when there is a negative effect of repeated vaccinations.


Subject(s)
Influenza Vaccines , Influenza, Human , Child , Child, Preschool , Humans , Immunization Programs , Influenza Vaccines/adverse effects , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination
5.
Lancet Respir Med ; 10(4): 355-366, 2022 04.
Article in English | MEDLINE | ID: covidwho-1655306

ABSTRACT

BACKGROUND: England has experienced a third wave of the COVID-19 epidemic since the end of May, 2021, coinciding with the rapid spread of the delta (B.1.617.2) variant, despite high levels of vaccination among adults. Vaccination rates (single dose) in England are lower among children aged 16-17 years and 12-15 years, whose vaccination in England commenced in August and September, 2021, respectively. We aimed to analyse the underlying dynamics driving patterns in SARS-CoV-2 prevalence during September, 2021, in England. METHODS: The REal-time Assessment of Community Transmission-1 (REACT-1) study, which commenced data collection in May, 2020, involves a series of random cross-sectional surveys in the general population of England aged 5 years and older. Using RT-PCR swab positivity data from 100 527 participants with valid throat and nose swabs in round 14 of REACT-1 (Sept 9-27, 2021), we estimated community-based prevalence of SARS-CoV-2 and vaccine effectiveness against infection by combining round 14 data with data from round 13 (June 24 to July 12, 2021; n=172 862). FINDINGS: During September, 2021, we estimated a mean RT-PCR positivity rate of 0·83% (95% CrI 0·76-0·89), with a reproduction number (R) overall of 1·03 (95% CrI 0·94-1·14). Among the 475 (62·2%) of 764 sequenced positive swabs, all were of the delta variant; 22 (4·63%; 95% CI 3·07-6·91) included the Tyr145His mutation in the spike protein associated with the AY.4 sublineage, and there was one Glu484Lys mutation. Age, region, key worker status, and household size jointly contributed to the risk of swab positivity. The highest weighted prevalence was observed among children aged 5-12 years, at 2·32% (95% CrI 1·96-2·73) and those aged 13-17 years, at 2·55% (2·11-3·08). The SARS-CoV-2 epidemic grew in those aged 5-11 years, with an R of 1·42 (95% CrI 1·18-1·68), but declined in those aged 18-54 years, with an R of 0·81 (0·68-0·97). At ages 18-64 years, the adjusted vaccine effectiveness against infection was 62·8% (95% CI 49·3-72·7) after two doses compared to unvaccinated people, for all vaccines combined, 44·8% (22·5-60·7) for the ChAdOx1 nCov-19 (Oxford-AstraZeneca) vaccine, and 71·3% (56·6-81·0) for the BNT162b2 (Pfizer-BioNTech) vaccine. In individuals aged 18 years and older, the weighted prevalence of swab positivity was 0·35% (95% CrI 0·31-0·40) if the second dose was administered up to 3 months before their swab but 0·55% (0·50-0·61) for those who received their second dose 3-6 months before their swab, compared to 1·76% (1·60-1·95) among unvaccinated individuals. INTERPRETATION: In September, 2021, at the start of the autumn school term in England, infections were increasing exponentially in children aged 5-17 years, at a time when vaccination rates were low in this age group. In adults, compared to those who received their second dose less than 3 months ago, the higher prevalence of swab positivity at 3-6 months following two doses of the COVID-19 vaccine suggests an increased risk of breakthrough infections during this period. The vaccination programme needs to reach children as well as unvaccinated and partially vaccinated adults to reduce SARS-CoV-2 transmission and associated disruptions to work and education. FUNDING: Department of Health and Social Care, England.


Subject(s)
COVID-19 , Adolescent , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Child , Child, Preschool , Cross-Sectional Studies , England/epidemiology , Humans , Middle Aged , SARS-CoV-2/genetics , Surveys and Questionnaires , Vaccine Efficacy , Young Adult
6.
PLoS Comput Biol ; 17(12): e1009697, 2021 12.
Article in English | MEDLINE | ID: covidwho-1571974

ABSTRACT

For the control of COVID-19, vaccination programmes provide a long-term solution. The amount of available vaccines is often limited, and thus it is crucial to determine the allocation strategy. While mathematical modelling approaches have been used to find an optimal distribution of vaccines, there is an excessively large number of possible allocation schemes to be simulated. Here, we propose an algorithm to find a near-optimal allocation scheme given an intervention objective such as minimization of new infections, hospitalizations, or deaths, where multiple vaccines are available. The proposed principle for allocating vaccines is to target subgroups with the largest reduction in the outcome of interest. We use an approximation method to reconstruct the age-specific transmission intensity (the next generation matrix), and express the expected impact of vaccinating each subgroup in terms of the observed incidence of infection and force of infection. The proposed approach is firstly evaluated with a simulated epidemic and then applied to the epidemiological data on COVID-19 in the Netherlands. Our results reveal how the optimal allocation depends on the objective of infection control. In the case of COVID-19, if we wish to minimize deaths, the optimal allocation strategy is not efficient for minimizing other outcomes, such as infections. In simulated epidemics, an allocation strategy optimized for an outcome outperforms other strategies such as the allocation from young to old, from old to young, and at random. Our simulations clarify that the current policy in the Netherlands (i.e., allocation from old to young) was concordant with the allocation scheme that minimizes deaths. The proposed method provides an optimal allocation scheme, given routine surveillance data that reflect ongoing transmissions. This approach to allocation is useful for providing plausible simulation scenarios for complex models, which give a more robust basis to determine intervention strategies.


Subject(s)
Algorithms , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2 , Vaccination/methods , Age Factors , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/supply & distribution , Computational Biology , Computer Simulation , Health Care Rationing/methods , Health Care Rationing/statistics & numerical data , Humans , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , Netherlands/epidemiology , Pandemics/prevention & control , Pandemics/statistics & numerical data , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
7.
Science ; 374(6574): eabl9551, 2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1494927

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections were rising during early summer 2021 in many countries as a result of the Delta variant. We assessed reverse transcription polymerase chain reaction swab positivity in the Real-time Assessment of Community Transmission­1 (REACT-1) study in England. During June and July 2021, we observed sustained exponential growth with an average doubling time of 25 days, driven by complete replacement of the Alpha variant by Delta and by high prevalence at younger, less-vaccinated ages. Prevalence among unvaccinated people [1.21% (95% credible interval 1.03%, 1.41%)] was three times that among double-vaccinated people [0.40% (95% credible interval 0.34%, 0.48%)]. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2 , Vaccine Efficacy , Adolescent , Adult , Age Factors , Aged , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Child , Child, Preschool , England/epidemiology , Ethnicity , Family Characteristics , Female , Hospitalization , Humans , Male , Middle Aged , Prevalence , Self Report , Socioeconomic Factors , Vaccination Coverage , Young Adult
8.
Lancet Reg Health Eur ; 4: 100098, 2021 May.
Article in English | MEDLINE | ID: covidwho-1213413

ABSTRACT

BACKGROUND: The time-concentrated nature of the first wave of the COVID-19 epidemic in England in March and April 2020 provides a natural experiment to measure changes in antibody positivity at the population level before onset of the second wave and initiation of the vaccination programme. METHODS: Three cross-sectional national surveys with non-overlapping random samples of the population in England undertaken between late June and September 2020 (REACT-2 study). 365,104 adults completed questionnaires and self-administered lateral flow immunoassay (LFIA) tests for IgG against SARS-CoV-2. FINDINGS: Overall, 17,576 people had detectable antibodies, a prevalence of 4.9% (95% confidence intervals 4.9, 5.0) when adjusted for test characteristics and weighted to the adult population of England. The prevalence declined from 6.0% (5.8, 6.1), to 4.8% (4.7, 5.0) and 4.4% (4.3, 4.5), over the three rounds of the study a difference of -26.5% (-29.0, -23.8). The highest prevalence and smallest overall decline in positivity was in the youngest age group (18-24 years) at -14.9% (-21.6, -8.1), and lowest prevalence and largest decline in the oldest group (>74 years) at -39.0% (-50.8, -27.2). The decline from June to September 2020 was largest in those who did not report a history of COVID-19 at -64.0% (-75.6, -52.3), compared to -22.3% (-27.0, -17.7) in those with SARS-CoV-2 infection confirmed on PCR. INTERPRETATION: A large proportion of the population remained susceptible to SARS-CoV-2 infection in England based on naturally acquired immunity from the first wave. Widespread vaccination is needed to confer immunity and control the epidemic at population level. FUNDING: This work was funded by the Department of Health and Social Care in England.

9.
Science ; 372(6545): 990-995, 2021 05 28.
Article in English | MEDLINE | ID: covidwho-1203930

ABSTRACT

Surveillance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has mainly relied on case reporting, which is biased by health service performance, test availability, and test-seeking behaviors. We report a community-wide national representative surveillance program in England based on self-administered swab results from ~594,000 individuals tested for SARS-CoV-2, regardless of symptoms, between May and the beginning of September 2020. The epidemic declined between May and July 2020 but then increased gradually from mid-August, accelerating into early September 2020 at the start of the second wave. When compared with cases detected through routine surveillance, we report here a longer period of decline and a younger age distribution. Representative community sampling for SARS-CoV-2 can substantially improve situational awareness and feed into the public health response even at low prevalence.


Subject(s)
COVID-19/epidemiology , Epidemiological Monitoring , Public Health Surveillance , Adolescent , Adult , Aged , Basic Reproduction Number , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Child , Child, Preschool , England/epidemiology , Female , Humans , Male , Middle Aged , Pandemics , Prevalence , SARS-CoV-2 , Young Adult
10.
Nat Commun ; 12(1): 1090, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1087445

ABSTRACT

In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2 transmission by restricting population movement through social distancing interventions, thus reducing the number of contacts. Mobility data represent an important proxy measure of social distancing, and here, we characterise the relationship between transmission and mobility for 52 countries around the world. Transmission significantly decreased with the initial reduction in mobility in 73% of the countries analysed, but we found evidence of decoupling of transmission and mobility following the relaxation of strict control measures for 80% of countries. For the majority of countries, mobility explained a substantial proportion of the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR - across countries [27-77%]). Where a change in the relationship occurred, predictive ability decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across countries [49-91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across countries [12-48%]) post-relaxation. In countries with a clear relationship between mobility and transmission both before and after strict control measures were relaxed, mobility was associated with lower transmission rates after control measures were relaxed indicating that the beneficial effects of ongoing social distancing behaviours were substantial.


Subject(s)
COVID-19/transmission , Communicable Disease Control/methods , Pandemics/prevention & control , SARS-CoV-2/isolation & purification , Algorithms , COVID-19/epidemiology , COVID-19/virology , Communicable Disease Control/statistics & numerical data , Global Health , Humans , Models, Theoretical , Physical Distancing , Quarantine/methods , SARS-CoV-2/physiology
11.
Nat Commun ; 12(1): 905, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1078587

ABSTRACT

England has experienced a large outbreak of SARS-CoV-2, disproportionately affecting people from disadvantaged and ethnic minority communities. It is unclear how much of this excess is due to differences in exposure associated with structural inequalities. Here, we report from the REal-time Assessment of Community Transmission-2 (REACT-2) national study of over 100,000 people. After adjusting for test characteristics and re-weighting to the population, overall antibody prevalence is 6.0% (95% CI: 5.8-6.1). An estimated 3.4 million people had developed antibodies to SARS-CoV-2 by mid-July 2020. Prevalence is two- to three-fold higher among health and care workers compared with non-essential workers, and in people of Black or South Asian than white ethnicity, while age- and sex-specific infection fatality ratios are similar across ethnicities. Our results indicate that higher hospitalisation and mortality from COVID-19 in minority ethnic groups may reflect higher rates of infection rather than differential experience of disease or care.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , England/epidemiology , Ethnicity/statistics & numerical data , Female , Health Personnel/statistics & numerical data , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , Minority Groups/statistics & numerical data , Mortality , Prevalence , Risk , Young Adult
12.
Wellcome Open Res ; 5: 170, 2020.
Article in English | MEDLINE | ID: covidwho-1068027

ABSTRACT

Background: Since early March 2020, the COVID-19 epidemic across the United Kingdom has led to a range of social distancing policies, which have resulted in reduced mobility across different regions. Crowd level data on mobile phone usage can be used as a proxy for actual population mobility patterns and provide a way of quantifying the impact of social distancing measures on changes in mobility. Methods: Here, we use two mobile phone-based datasets (anonymised and aggregated crowd level data from O2 and from the Facebook app on mobile phones) to assess changes in average mobility, both overall and broken down into high and low population density areas, and changes in the distribution of journey lengths. Results: We show that there was a substantial overall reduction in mobility, with the most rapid decline on the 24th March 2020, the day after the Prime Minister's announcement of an enforced lockdown. The reduction in mobility was highly synchronized across the UK. Although mobility has remained low since 26th March 2020, we detect a gradual increase since that time. We also show that the two different datasets produce similar trends, albeit with some location-specific differences. We see slightly larger reductions in average mobility in high-density areas than in low-density areas, with greater variation in mobility in the high-density areas: some high-density areas eliminated almost all mobility. Conclusions: These analyses form a baseline from which to observe changes in behaviour in the UK as social distancing is eased and inform policy towards the future control of SARS-CoV-2 in the UK.

13.
Wellcome Open Res ; 5: 81, 2020.
Article in English | MEDLINE | ID: covidwho-1068026

ABSTRACT

Background: The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. By 24 March 2020, over 440,000 cases and almost 20,000 deaths had been reported worldwide. In response to the fast-growing epidemic, which began in the Chinese city of Wuhan, Hubei, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. These interventions have impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic was not clear. Methods: Using daily reported cases from mainland China and Hong Kong SAR, we estimated transmissibility over time and compared it to daily within-city movement, as a proxy for economic activity. Results: Initially, within-city movement and transmission were very strongly correlated in the five mainland provinces most affected by the epidemic and Beijing. However, that correlation decreased rapidly after the initial sharp fall in transmissibility. In general, towards the end of the study period, the correlation was no longer apparent, despite substantial increases in within-city movement. A similar analysis for Hong Kong shows that intermediate levels of local activity were maintained while avoiding a large outbreak. At the very end of the study period, when China began to experience the re-introduction of a small number of cases from Europe and the United States, there is an apparent up-tick in transmission. Conclusions: Although these results do not preclude future substantial increases in incidence, they suggest that after very intense social distancing (which resulted in containment), China successfully exited its lockdown to some degree. Elsewhere, movement data are being used as proxies for economic activity to assess the impact of interventions. The results presented here illustrate how the eventual decorrelation between transmission and movement is likely a key feature of successful COVID-19 exit strategies.

14.
J Travel Med ; 27(8)2020 12 23.
Article in English | MEDLINE | ID: covidwho-1059308
15.
Int J Infect Dis ; 102: 463-471, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-966658

ABSTRACT

OBJECTIVES: In this data collation study, we aimed to provide a comprehensive database describing the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19) throughout the main provinces in China. METHODS: From mid-January to March 2020, we extracted publicly available data regarding the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted descriptive analyses of the epidemic in the six most-affected provinces. RESULTS: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends differed among provinces. Compared with Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as the local transmission of COVID-19 declined, switching the focus of measures to the testing and quarantine of inbound travellers may have helped to sustain the control of the epidemic. CONCLUSIONS: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database containing these indicators and information regarding control measures is a useful resource for further research and policy planning in response to the COVID-19 epidemic.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , COVID-19/prevention & control , China/epidemiology , Contact Tracing , Databases, Factual , Humans
16.
Nat Commun ; 11(1): 6189, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-960314

ABSTRACT

As of 1st June 2020, the US Centres for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We use changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. We estimate that Rt was only below one in 23 states on 1st June. We also estimate that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model forecasts of deaths with low error and good coverage of our credible intervals.


Subject(s)
COVID-19/epidemiology , Pandemics/statistics & numerical data , Bayes Theorem , COVID-19/transmission , Humans , Models, Statistical , United States/epidemiology , Virus Diseases/epidemiology
17.
BMC Med ; 18(1): 321, 2020 10 09.
Article in English | MEDLINE | ID: covidwho-840743

ABSTRACT

BACKGROUND: After experiencing a sharp growth in COVID-19 cases early in the pandemic, South Korea rapidly controlled transmission while implementing less stringent national social distancing measures than countries in Europe and the USA. This has led to substantial interest in their "test, trace, isolate" strategy. However, it is important to understand the epidemiological peculiarities of South Korea's outbreak and characterise their response before attempting to emulate these measures elsewhere. METHODS: We systematically extracted numbers of suspected cases tested, PCR-confirmed cases, deaths, isolated confirmed cases, and numbers of confirmed cases with an identified epidemiological link from publicly available data. We estimated the time-varying reproduction number, Rt, using an established Bayesian framework, and reviewed the package of interventions implemented by South Korea using our extracted data, plus published literature and government sources. RESULTS: We estimated that after the initial rapid growth in cases, Rt dropped below one in early April before increasing to a maximum of 1.94 (95%CrI, 1.64-2.27) in May following outbreaks in Seoul Metropolitan Region. By mid-June, Rt was back below one where it remained until the end of our study (July 13th). Despite less stringent "lockdown" measures, strong social distancing measures were implemented in high-incidence areas and studies measured a considerable national decrease in movement in late February. Testing the capacity was swiftly increased, and protocols were in place to isolate suspected and confirmed cases quickly; however, we could not estimate the delay to isolation using our data. Accounting for just 10% of cases, individual case-based contact tracing picked up a relatively minor proportion of total cases, with cluster investigations accounting for 66%. CONCLUSIONS: Whilst early adoption of testing and contact tracing is likely to be important for South Korea's successful outbreak control, other factors including regional implementation of strong social distancing measures likely also contributed. The high volume of testing and the low number of deaths suggest that South Korea experienced a small epidemic relative to other countries. Caution is needed in attempting to replicate the South Korean response in populations with larger more geographically widespread epidemics where finding, testing, and isolating cases that are linked to clusters may be more difficult.


Subject(s)
Betacoronavirus , Contact Tracing/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine/methods , Bayes Theorem , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Contact Tracing/trends , Coronavirus Infections/diagnosis , Disease Outbreaks/prevention & control , Humans , Pneumonia, Viral/diagnosis , Quarantine/trends , Republic of Korea/epidemiology , SARS-CoV-2
18.
Lancet Glob Health ; 8(9): e1132-e1141, 2020 09.
Article in English | MEDLINE | ID: covidwho-641159

ABSTRACT

BACKGROUND: COVID-19 has the potential to cause substantial disruptions to health services, due to cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions to services for HIV, tuberculosis, and malaria in low-income and middle-income countries with high burdens of these diseases could lead to additional loss of life over the next 5 years. METHODS: Assuming a basic reproduction number of 3·0, we constructed four scenarios for possible responses to the COVID-19 pandemic: no action, mitigation for 6 months, suppression for 2 months, or suppression for 1 year. We used established transmission models of HIV, tuberculosis, and malaria to estimate the additional impact on health that could be caused in selected settings, either due to COVID-19 interventions limiting activities, or due to the high demand on the health system due to the COVID-19 pandemic. FINDINGS: In high-burden settings, deaths due to HIV, tuberculosis, and malaria over 5 years could increase by up to 10%, 20%, and 36%, respectively, compared with if there was no COVID-19 pandemic. The greatest impact on HIV was estimated to be from interruption to antiretroviral therapy, which could occur during a period of high health system demand. For tuberculosis, the greatest impact would be from reductions in timely diagnosis and treatment of new cases, which could result from any prolonged period of COVID-19 suppression interventions. The greatest impact on malaria burden could be as a result of interruption of planned net campaigns. These disruptions could lead to a loss of life-years over 5 years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV and tuberculosis epidemics. INTERPRETATION: Maintaining the most critical prevention activities and health-care services for HIV, tuberculosis, and malaria could substantially reduce the overall impact of the COVID-19 pandemic. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development, and Medical Research Council.


Subject(s)
Coronavirus Infections/epidemiology , Developing Countries , HIV Infections/prevention & control , Health Services Accessibility , Malaria/prevention & control , Pandemics , Pneumonia, Viral/epidemiology , Tuberculosis/prevention & control , COVID-19 , HIV Infections/epidemiology , HIV Infections/mortality , Humans , Malaria/epidemiology , Malaria/mortality , Models, Theoretical , Tuberculosis/epidemiology , Tuberculosis/mortality
19.
Science ; 369(6502): 413-422, 2020 07 24.
Article in English | MEDLINE | ID: covidwho-595548

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic poses a severe threat to public health worldwide. We combine data on demography, contact patterns, disease severity, and health care capacity and quality to understand its impact and inform strategies for its control. Younger populations in lower-income countries may reduce overall risk, but limited health system capacity coupled with closer intergenerational contact largely negates this benefit. Mitigation strategies that slow but do not interrupt transmission will still lead to COVID-19 epidemics rapidly overwhelming health systems, with substantial excess deaths in lower-income countries resulting from the poorer health care available. Of countries that have undertaken suppression to date, lower-income countries have acted earlier. However, this will need to be maintained or triggered more frequently in these settings to keep below available health capacity, with associated detrimental consequences for the wider health, well-being, and economies of these countries.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Developing Countries , Global Health , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Poverty , COVID-19 , Coronavirus Infections/transmission , Humans , Patient Acceptance of Health Care , Pneumonia, Viral/transmission , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL